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The present study deals with a homogeneous and isotopic micropolar porous thermoe-
lastic circular plate by employing eigenvalue approach in the three phase lag theory of
thermoelasticity due to thermomechanical sources. The expressions of components of
displacements, microrotation, volume fraction field, temperature distribution, normal
stress, shear stress and couple shear stress are obtained in the transformed domain by
employing the Laplace and Hankel transforms. The resulting quantities are obtained in
the physical domain by employing the numerical inversion technique. Numerical compu-
tations of the resulting quantities are made and presented graphically to show the effects
of void, phase lags, relaxation time, with and without energy dissipation.
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1. Introduction

The linear theory of micropolar thermoelasticity was developed by Nowacki [1] and
Eringen [2]. Tauchert, Claus and Ariman [3] also examined the linear theory of
micropolar coupled thermoelasticity. Dost and Tabarrok [4] represented the the-
ory of generalized micropolar thermoelasticity taking into account Green Lindsay
theory [5] of thermoelasticity. The theory of micropolar thermoelasticity including
heat flux among constitutive variables was investigated by Chandrasekharaiah [6].

https://doi.org/10.2478/mme-2018-0080
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Ciarletta [7] established a solution of Galerkin type of a homogeneous and
isotropic micropolar thermoelastic bodies and showed the effect of a concentrated
heat source. Youssef [8] studied a problem of infinite body of generalized thermoe-
lasticity with temperature dependent mechanical and thermal properties. Kumar
and Gupta [9] discussed the wave propagation in a transversely isotropic micropolar
thermoelastic solid without energy dissipation. Youssef [10] studied a problem of
thermoelastic interactions in a isotropic medium with spherical cavity in the context
of generalized theory of thermoelasticity with one relaxation time. Passarella and
Zampoli [11] established the reciprocal and variational principles of convolutional
type of micropolar thermoelastic solid having a centre of symmetry in the context
of thermoelasticity theory of without energy dissipation. Sharma and Marin [12]
investigated the effect of two temperatures on the reflection of plane waves in gen-
eralized thermoelastic solid. Kumar and Abbas [13] presented the two dimensional
problem of micropolar thermoelastic solid with the effect of two temperatures in
the context of Lord Shulman theory [14] due to thermal source.

Sharma and Bhargava [15] described the effect of thermal properties and stiff-
ness on the amplitude ratios of reflected and refracted thermoelastic plane waves
between the imperfect interface of generalized thermoelastic solid half space and
thermal conducting viscous liquid. Kumar and Kumar [16] studied the deformation
in micropolar thermoelastic diffusion solid subjected to inclined load with thermal
laser pulse. Othman, Tantawi and Hilal [17] studied a two dimensional problem
of isotropic and homogeneous initially stressed micropolar thermoelastic solid with
microtemperatures and gravity field.

Iesan [18] studied the propagation of shock waves in micropolar elastic solids with
voids. Marin [19, 20] investigated the basic equations in the theory of micropolar
bodies with voids and formulated the initial boundary value problem by applying the
general results from the theory of elliptic equations. Kumar and Choudhary [21,22]
presented the dynamical problem of a homogeneous and isotropic half space in
micropolar elastic medium with voids due to a normal point source. Ciarletta,
Svanadze and Buonanno [23] developed the linear theory of micropolar thermoelas-
ticity of materials with voids and obtained some basic properties of wave numbers
of the longitudinal and transverse plane harmonic waves. Othman and Lotfy [24]
presented a model of the equations of a two dimensional problem in a micropolar
generalized thermoelastic medium with voids due to various sources in the context
of the Lord-Shulman [14], Green-Lindsay [5] theories and the classical dynamical
couples theory. Lianngenga and Lalawmpuia [25] derived the constitutive equation
and linear field equation in micropolar elastic materials containing voids. Kumar
and Abbas [26] investigated a two dimensional axisymmetric problem in saturated
porous media with incompressible fluid due to mechanical and thermal sources.

Roychoudhuri [27] investigated a three phase lag model by taking the heat con-
duction law that includes temperature gradient and thermal displacement gradient
among constitutive variables in the theory of coupled thermoelasticity. This model
is an extension of the thermoelastic models proposed by Lord Shulman [14] and
Tzou [28, 29]. Kumar and Chawla [30] studied the propagation of longitudinal
and transverse waves at the interface between uniform elastic solid half space and
thermoelastic solid with three phase lag model. El-Karamany and Ezzat [31] estab-
lished the uniqueness and reciprocal theorems and variational principle in the three
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phase lag micropolar thermoelasticity theory. Othman, Hasona and Abd-Elaziz [32]
studied a two dimensional problem of micropolar thermoelastic isotropic medium
with three phase lag model under the effect of rotation and initial stress. Kumar,
Miglani and Rani [33] studied the axisymmetric problem of thick circular plate in
a micropolar porous thermoelastic medium by employing eigenvalue approach sub-
jected to thermomechanical sources. Marin, Agarwal and Codarcea [34] studied a
mixed initial boundary value problem in three phase lag dipolar thermoelastic body.

In this paper, we investigate a homogeneous and isotropic micropolar porous
thermoelastic circular plate with three phase lag model by employing eigenvalue
approach. Laplace and Hankel transforms are used to obtain the expressions of
components of displacements, microrotation, volume fraction field, temperature dis-
tribution and stresses in the transformed domain. The resulting quantities are ob-
tained in the physical domain by employing the inversion technique of Laplace and
Hankel transforms. The effects of void, phase lag, relaxation time, with and with-
out energy dissipation have been shown on the resulting quantities and illustrated
graphically.

2. Basic Equations

Following Kumar and Partap [35] and Roychoudhuri [27], the field equations and
the constitutive relations in a micropolar porous thermoelastic medium with three
phase lag model in the absence of body forces, body couples, heat sources and
extrinsic equilibrated body force are taken as

(λ+ µ)∇ (∇.−→u ) + (µ+K)∇2−→u +K∇×
−→
φ + b∇φ∗ − ν∇T = ρ

∂2−→u
∂t2

, (1)

(α+ β + γ)∇
(
∇.
−→
φ
)
− γ∇×

(
∇×

−→
φ
)

+K∇×−→u − 2K
−→
φ = ρj

∂2
−→
φ

∂t2
, (2)

α1∇2φ∗ − b (∇.−→u )− ξ1φ∗ − ω0
∂φ∗

∂t
+mT = ρχ

∂2φ∗

∂t2
, (3)

[
K∗
(

1 + τν
∂

∂t

)
+K∗1

∂

∂t

(
1 + τt

∂

∂t

)]
∇2T =(

1 + τq
∂

∂t
+
τ2q
2

∂2

∂t2

)
∂2

∂t2
[ρC∗T +mT0φ

∗ + νT0 (∇.−→u )] , (4)

tij = λur,rδij + µ (ui,j + uj,i) +K (uj,i − εijkφk)− νTδij + bδijφ
∗, (5)

mij = αφr,rδij + βφi,j + γφj,i, (6)

where −→u ,
−→
φ are displacement and microrotation vector, ρ is the density, j is the

micro inertia, λ, µ, K, α, β, γ are the micropolar constants, φ∗ is the change
in volume fraction field, α1, b, ξ1, ω0, m and χ are the elastic constants due to
the presence of voids, T is the change in temperature of the medium at any time,
ν = (3λ+ 2µ+K)αt, αt is the coefficient of linear thermal expansion, C∗ is the
specific heat at constant strain, K∗ is the material characteristic, K∗1 is the co-
efficient of thermal conductivity, τt, τq and τυ respectively, the phase lag of the
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temperature gradient, the phase lag of the heat flux and the phase lag of the ther-
mal displacement. tij , mij and δij are the stress tensor, couple stress tensor and
Kronecker delta and

∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
+

∂2

∂z2

is the Laplacian operator.

3. Formulation of the Problem

A homogeneous and isotropic micropolar porous thermoelastic circular plate having
thickness 2d is considered. The region 0 ≤ r ≤ ∞, −d ≤ z ≤ d is occupied by the
plate. Cylindrical polar coordinate system (r, θ, z) is taken with symmetry about
z-axis. We take a two dimensional problem and the middle surface of the plate is
taken as the origin of the coordinates. The z-axis is normal to the plate along its
thickness. The initial temperature T0 is a constant temperature in the thick circular

plate. The components of displacement vector −→u and microrotation vector
−→
φ can

be written for a two dimensional problem as

−→u = (ur, 0, uz) ,
−→
φ = (0, φθ, 0) . (7)

Introduce the following non-dimensional variables

r′ =
ω∗r

c1
, z′ =

ω∗z

c1
, u′r =

ρc1ω
∗ur

νT0
, u′z =

ρc1ω
∗uz

νT0
, φ

′

θ =
ρc21φθ
νT0

, φ∗′ =
ρc21φ

∗

νT0
,

T ′ =
T

T0
, t′ = ω∗t, τ ′t = ω∗τt, τ

′
q = ω∗τq, t

′
ij =

tij
νT0

,m′ij =
ω∗

c1νT0
mij , (8)

where

c21 =
λ+ 2µ+K

ρ
,

The Laplace and Hankel transforms are defined as follows

f (r, z, s) = L{f (r, z, t)} =

∫ ∞
0

f (r, z, t) e−stdt, (9)

f̃ (ξ, z, s) = H f (x, z, s) =

∫ ∞
0

rf (x, z, s) Jn (ξr) dr. (10)

Equations (1)–(10), with the aid of (8)–(10), yield

˜̈ur = a11ũr + a14φ̃∗+ a15T̃ + b12˜̇uz + b13
˜̇
φθ, (11)

˜̈uz = a22ũz + a23φ̃θ + b21 ˜̇
ru+ b24

˜̇
φ+ b25

˜̇T , (12)˜̈
φθ = a32ũz + a33φ̃θ + b31ũ′r, (13)

φ̃′∗ = a41ũr + a44φ̃∗+ a45T̃ + b42ũ′z, (14)˜̈T = a51ũr + a54φ̃∗+ a55T̃ + b52ũ′z, (15)
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where

a11 =

(
ξ2 + s2

δ2

)
, a14 =

p0ξ

δ2
, a15 = − ξ

δ2
, a22 =

(
ξ2δ2 + s2

)
, a23 = pξ,

a32 = −ξδ∗2, a33 =

(
ξ2 +

s2

δ21
+ 2δ∗2

)
,

a41 = p0δ ∗1 ξ, a44 =
(
ξ2 + δ ∗3 s2 + p1δ ∗1 +δ ∗2 s

)
,

a45 = −νδ∗1 , a51 =
εξs2

(
1 + τqs+

τ2
q

2 s
2
)

Z∗ (1 + τνs) + (1 + τts) s
, a54 =

ενs2
(

1 + τqs+
τ2
q

2 s
2
)

Z∗ (1 + τνs) + (1 + τts) s
,

a55 =

(
ξ2(Z∗ (1 + τνs) + s (1 + τts)) +Q∗s2

(
1 + τqs+

τ2
q

2 s
2
))

Z∗ (1 + τνs) + (1 + τts) s
, b12 =

ξ
(
1− δ2

)
δ2

,

b13 =
p

δ2
, b21 = −ξ

(
1− δ2

)
, b24 = −p0, b25 = 1, b31 = −δ∗2, b42 = p0δ

∗
1 ,

b52 =
εs2
(

1 + τqs+
τ2
q

2 s
2
)

Z∗ (1 + τνs) + (1 + τts) s
, c22 =

µ+K

ρ
, δ2 =

c22
c21
,

p =
K

ρc21
, p0 =

b

ρc21
, δ∗2 =

Kc21
γω∗2

,

δ21 =
c23
c21
, c23 =

γ

ρj
, δ∗1 =

ρc41
α1ω∗

2 , ν =
m

ν
, p1 =

ξ1
ρc21

, δ∗2 =
ω0c

2
1

α1ω∗
, δ∗3 =

ρχc21
α1

,

Q∗ =
ρC∗c21
K∗1ω

∗ , ε =
ν2T0
ρK∗1ω

∗ .

The system of equations (11)–(15) can be written as

d

dz
W (ξ, z, s) = A (ξ, s)W (ξ, z, s) , (16)

where

W =

[
U
DU

]
, A =

[
O I
A2 A1

]
, U =


ũr
ũz
φ̃θ
φ̃∗

T̃

 , D =
d

dz
,
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O =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , I =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 ,

A2 =


a11 0 0 a14 a15

0 a22 a23 0 0
0 a32 a33 0 0
a41 0 0 a44 a45
a51 0 0 a54 a55

 ,

A1 =


0 b12 b13 0 0
b21 0 0 b24 b25
b31 0 0 0 0
0 b42 0 0 0
0 b52 0 0 0

 .
The solution of (16) may be assumed

W (ξ, z, s) = X (ξ, s) eqz, (17)

which gives
A (ξ, s)W (ξ, z, s) = qW (ξ, z, s) . (18)

Equation (18) leads to the eigenvalue problem. Therefore, the characteristic
equation corresponding to the matrix A can be obtained by solving the following
equation

det (A− qI) = 0 . (19)

After solving the equation (19), we obtain

q10 − λ1q8 + λ2q
6 − λ3q4 + λ4q

2 − λ5 = 0, (20)

where λ1, λ2, λ3, λ4 and λ5 are given in Appendix I.
We suppose that the roots of Eq. (20) are ±qi, i = 1, 2, 3, 4, 5.
We determined the eigenvectors Xi (ξ, s) corresponding to the eigenvalues qi by

solving
[A− qI]Xi (ξ, s) = 0 . (21)

The set of eigenvector Xi (ξ, s) may be written as

Xi (ξ, s) =

[
Xi1 (ξ, s)
Xi2 (ξ, s)

]
, (22)

where

Xi1 (ξ, s) =


aiqi
bi
−ξ
di
ei

 , Xi2 (ξ, s) =


aiq

2
i

biqi
−ξqi
diqi
eiqi

 , q = qi; i = 1, . . . , 5,
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Xj1 (ξ, s) =


−aiqi
bi
−ξ
di
ei

 , Xj2 (ξ, s) =


aiq

2
i

−biqi
ξqi
−diqi
−eiqi

 ,
j = i+ 5, q = −qi; i = 1, . . . , 5 ,

where ai, bi, di, ei, ∆i, r1, r2, r3 and r4 are given in Appendix II.
We assume the solution of Eq. (16) as

W (ξ, z, s) =

∫ 5

i=1

NiXi (ξ, s) cosh (qiz) , (23)

where N1, N2, N3, N4 and N5 are arbitrary constants.

4. Boundary Conditions

The boundary conditions may be defined at the surface z = ±d of the plate as

1. A thermal source
dT

dz
=
F0δ (t) δ (r)

2πr
, (24)

2. A concentrated normal force

tzz = δ (t) δ (a− r) , (25)

3. Vanishing of shear stress
tzr = 0, (26)

4. Vanishing of couple shear stress

mzθ = 0, (27)

5. Vanishing of gradient of volume fraction field

dφ∗

dz
= 0, (28)

where F0 is the constant temperature applied on the boundary and δ() is the Dirac
delta function.

The stress components tzz, tzr and mzθ are given by

tzz = (λ+ 2µ+K)
∂uz
∂z

+ λ

(
∂ur
∂r

+
ur
r

)
− νT + bφ∗, (29)

tzr = (µ+K)
∂ur
∂z

+ µ
∂uz
∂r
−Kφθ, (30)

mzθ = γ
∂φθ
∂z

. (31)
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The expressions of displacements, microrotation, volume fraction field, temperature
distribution and stresses are obtained in the transformed domain by making the use
of (5)–(10) and (23)–(31) as

(
ũr, ũz, φ̃θ, φ̃∗, T̃

)
=

1

∆

∫ 5

i=1

(aiqi, bi,−ξ, di, ei)∆i cosh (qiz) (32)

(
t̃zz, t̃zr, m̃zθ

)
=

1

∆

∫ 5

i=1

(Li,Mi, Pi) ∆i cosh (qiz) , (33)

where

∆ =

∣∣∣∣∣∣∣∣∣∣
S1 S2 S3 S4 S5

T1 T2 T3 T4 T5
U1 U2 U3 U4 U5

V1 V2 V3 V4 V5
W1 W2 W3 W4 W5

∣∣∣∣∣∣∣∣∣∣
,

and ∆i, (i = 1, 2, 3, 4, 5) are obtained from ∆ by replacing i-th column of ∆ with
|Q,R, 0, 0, 0|tr, also

Si = eiqi sinh (qid) , Ti = Li cosh (qid) , Ui = Mi cosh (qid) , Vi = Pi cosh (qid) ,

Wi = diqi sinh (qid) , Q =
F0

2π
, R = aJ0 (ξa) ,

Li =

[
λξaiqi
ρc21

+ p0di − ei + biqi

]
, Mi =

[
−µξbi
ρc21

+
ξK

ρc21
+

(
µ+K

ρc21

)
aiq

2
i

]
,

Pi =
−γξω∗2qi

ρc41
, i = 1, . . . 5.

5. Particular Cases

1. If we take K∗ = 0 in Eqs. (32)–(33), then we obtain the corresponding results
for micropolar porous thermoelastic with dual phase lag model.

2. If we take, K∗ = 0, τt = τ2q = 0 and τq = τ0 in Eqs. (32)–(33), then we
obtain the corresponding results for micropolar porous thermoelastic with
one relaxation time.

3. If we take τυ = K∗1 = τq = τ2q = 0 in Eqs. (32)–(33), then we obtain
the corresponding results for micropolar porous thermoelastic with energy
dissipation.

4. If we take τυ = τt = τq = τ2q = 0 in Eqs. (32)–(33), then we obtain the
corresponding results for micropolar porous thermoelastic without energy dis-
sipation.
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5. If we neglect the porosity effect, i.e. α1, b, ξ1, ω0, χ and φ∗ tend to zero, we
obtain the micropolar thermoelastic medium in which the boundary conditions
take the form

dT

dz
=
F0δ (t) δ (r)

2πr
,

tzz = δ (t) δ (a− r) ,
tzr = 0,

mzθ = 0.

The corresponding expressions are given by(
ũr, ũz, φ̃θ, T̃

)
=

1

∆∗∗

∫ 4

i=1

(aiqi, bi,−ξ, ei)∆∗∗i cosh (qiz) ,

(
t̃zz, t̃zr, m̃zθ

)
=

1

∆∗∗

∫ 4

i=1

(Li,Mi, Pi) ∆∗∗i cosh (qiz) ,

where

∆∗∗ =

∣∣∣∣∣∣∣∣
S∗∗1 S∗∗2 S∗∗3 S∗∗4
T ∗∗1 T ∗∗2 T ∗∗3 T ∗∗4
U∗∗1 U∗∗2 U∗∗3 U∗∗4
V ∗∗1 V ∗∗2 V ∗∗3 V ∗∗4

∣∣∣∣∣∣∣∣ ,
and ∆∗∗i (i = 1, 2, 3, 4) are obtained from ∆∗∗ by replacing i-th column of ∆∗∗ with
|Q,R, 0, 0|tr
also

S∗∗i = eiqi sinh (qid) , T ∗∗i = L∗∗i cosh (qid) , U∗∗i = M∗∗i cosh (qid) ,

V ∗∗i = P ∗∗i cosh (qid) , i = 1, 2, 3, 4

L∗∗i =

[
λξaiqi
ρc21

− ei + biqi

]
,M∗∗i =

[
−µξbi
ρc21

+
ξK

ρc21
+

(
µ+K

ρc21

)
aiq

2
i

]
, i = 1, 2, 3, 4

P ∗∗i =
−γξω∗2qi

ρc41
, i = 1, 2, 3, 4.

6. Inversion of Transforms

The transformed displacements, microrotation, volume fraction field, temperature
distribution and stresses are of the form f̃ (ξ, z, s) and we have to obtain the function
f (r, z, t), the inversion formula for the Hankel transform is taken as

f̃ (ξ, z, s) =

∫ ∞
0

ξf (ξ, z, s) Jn (ξr) dξ. (34)

The inversion formula for the Laplace transforms is taken as

f (r, z, t) =
1

2ιπ

∫ c+ι∞

c−ι∞
f (r, z, s) e−stds, (35)

where c is an arbitrary constant greater than all real parts of the singularities of
f (r, z, t) .
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7. Numerical Results and Discussions

Following Eringen [36] gives the values for micropolar parameters as

λ = 9.4× 1010 Nm−2, µ = 4.0× 1010 Nm−2, K = 1.0× 1010 Nm−2,

ρ = 1.74× 103 Kgm−3, j = 0.2× 10−19 m2, γ = 0.779× 10−9 N,

F0 = 1.

Following Dhaliwal and Singh [37] give the values for thermal parameters as

C∗ = 1.04×103 JKg−1 K−1, K∗1 = 1.7×106 Jm−1s−1 K−1, αt = 2.33×10−5 K−1,

τt = 0.1× 10−13 s, τq = 0.2× 10−13 s, τ0 = 6.131× 10−13 s,

τν = 8.765× 10−13 s, T0 = 0.298× 103 K, m = 1.13849× 1010 N/m
2

K.

The values of void parameters are

α1 = 3.688× 10−9 N, b = 1.138494× 1010 N/m
2
, ξ1 = 1.1475× 1010 N/m

2
,

χ = 1.1753× 10−19 m2, ω0 = 0.0787× 10−1 N× s/m
2
.

Figures 1–5 represent the variations of normal stress, shear stress, couple shear

Figure 1 Variations of normal stress tzz

stress, volume fraction field and temperature distribution with distance r in case of
micropolar thermoelastic porous with three phase lag model (MTPT), micropolar
thermoelastic with three phase lag model (MTT), micropolar thermoelastic porous
with dual phase lag model (MTPD), micropolar thermoelastic porous with Lord
Shulman theory (MTPL), micropolar thermoelastic porous with GN type II (MT-
PII) and micropolar thermoelastic porous with GN type III (MTPIII). In all these
figures, MTPT, MTPD, MTPL, MTT, MTPII and MTPIII corresponding to solid
line (——), small dash line (- - - - -), dash line (− - − -), dash line with centred
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symbol (-∗-∗-∗-), dash line with centred symbol (- × - ×) and dash line with centred
symbol (- o - o -) respectively.

Figure 1 shows that the values of tzz initially decrease for 1 ≤ r ≤ 1.6 for MTPT,
MTPL, MTPII and MTPIII and increase for 1 ≤ r ≤ 1.5 for MTT and MTPD and
then oscillate as r increases. Near and away from the source, the values for MTPT,
MTPII and MTPIII are similar. tzz has maximum value 1.3 ≤ r ≤ 1.7 for MTT
and minimum value for 1.6 ≤ r ≤ 1.8 for MTPII.

Figure 2 Variations of shear stress tzr

Figure 2 illustrates that the values of tzr initially decrease for MTPT, MTPL,
MTPII and MTPIII for the ranges 1 ≤ r ≤ 1.5, 1 ≤ r ≤ 1.2, 1 ≤ r ≤ 1.3 and
1 ≤ r ≤ 2 respectively and increase for MTT and MTPD for 1 ≤ r ≤ 1.6 and
1 ≤ r ≤ 1.8 respectively. tzr initially attains the maximum value for MTPIII and
minimum value for MTPII. All the curves oscillate with different amplitude. Away
from the source, MTPT, MTT, MTPD, MTPII and MTPIII have similar behavior.

Figure 3 Variations of couple shear stress mzθ
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Figure 3 exhibits that the values of mzθ initially decrease for MTPT, MTPD,
MTPL, MTPII and MTPIII and increase for MTT and then oscillate about the
origin. mzθ has similar values for MTPT, MTT, MTPD, MTPL and MTPII away
from the source. The value of mzθ for MTT is large for 1.2 ≤ r ≤ 1.6 and small for
MTPII for 1.2 ≤ r ≤ 1.8 in comparison to other cases.

Figure 4 Variations of volume fraction field φ∗

Figure 4 indicates that the values of φ∗ increase for MTPT, MTPD, MTPII and
MTPIII for 1 ≤ r ≤ 1.5 and 1 ≤ r ≤ 1.8 respectively and then oscillate about the
origin as r increases. The value of φ∗ decreases for 1 ≤ r ≤ 2 and then oscillates
with large amplitude. φ∗ has similar values for 3.5 ≤ r ≤ 8 as in the cases of MTPT,
MTPD, MTPII and MTPIII. At the beginning, φ∗ has large value for MTPL and
small values for MTPII and MTPIII. Near the application of the source, φ∗ has
same value for MTPII and MTPIII and away from the source, MTPT, MTPD,
MTPII and MTPIII have the same values.

Figure 5 Variations of temperature distribution T
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Figure 5 shows that the values for T initially increase for MTPT, MTT, MTPII
and MTPIII for 1 ≤ r ≤ 1.4, 1 ≤ r ≤ 1.6 respectively and decrease for 1 ≤ r ≤ 2 for
MTPD and MTPL. The values of T coincide for MTPT and MTT for 1 ≤ r ≤ 8.
T has the minimum value for MTPII and MTPIII in comparison to the other cases
near the application of the source. T attains its large value for 1.3 ≤ r ≤ 2 and
small value for 5.6 ≤ r ≤ 8 for MTPIII. Away from the source, T has similar value
for MTPT, MTT, MTPD, MTPL and MTPII.

8. Conclusions

In this paper, an axisymmetric problem for three phase lag micropolar porous ther-
moelastic circular plate by employing eigenvalue approach subjected to thermo-
mechanical sources has been investigated. Integral transform technique has been
applied to solve the problem. All the resulting quantities are influence by the
miropolarity, void and thermal effect. Effects of void, dual phase lag, thermal re-
laxation time, with and without energy dissipation are presented on the normal
stress, shear stress, couple shear stress, volume fraction field and temperature dis-
tribution. A significant oscillatory behavior is observed on the resulting quantities.
The resulting quantities have similar behavior for MTPII and MTPIII theories. It
is also observed that the temperature distribution has similar behavior for MTPT,
MTT, MTPII and MTPIII which is opposite to MTPD and MTPL. It is also evident
that near the application of the source, normal stress and shear stress have similar
behavior and variation for MTPT, MTPII and MTPIII and opposite to those MTT
and MTPD.
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Appendix I

λ1 = −(a11 + a22 + a33 + a44 + a55 + b12b21 + b13b31 + b25b52 + b24b42),

λ2 = −a14a41 + a33a55 + a44a55 + a11a55 + a22a55 + a33a44 + a11a33 + a22a33

+a11a44 + a22a44 + a11a22 − a15a51 − a45a54 − a23a32 + (a33 + a44 + a55) b12b21

− (a14b42 + a15b52 + a32b13) b21 + (a11 + a33 + a55) b42b24 + (a11 + a33 + a44) b25b52

− (a41b24 + a23b31 + a51b25) b12 + (a22 + a44 + a55 + b42b24 + b25b52) b31b13

−a45b52b24 − a54b42b25,

λ3 = (a11a22 + a22a55)(a33 + a44)− a23a32 (a11 + a44 + a55)

+a11a55 (a22 + a33 + a44) + a33a44 (a11 + a22 + a55)− a45a54 (a11 + a22 + a33)

−a14a41 (a22 + a33 + a55)− a15a51 (a22 + a33 + a44) + b42b25

(a14a51 − a11a54 − a33a54) + b52b25(−a14a41 + a11a33 + a14a44 + a33a44)

+b52b24 (a15a41 − a11a45 − a33a45)− b12b25(a33a51 + a44a51 − a41a54)

−b12b24(a33a41−a45a51 +a41a55)+b42b24(−a15a51 +a11a33 +a11a55 +a33a55)

−a32b21b13 (a44 + a55) + b31b13(a22a44 + a22a55 + a44a55 − a45a54)

+b21b42(a15a54 − a14a33 − a14a55) + b21b52(a14a45 − a15a33 − a15a44)

+b12b21 (−a45a54 + a33a44 + a44a55 + a33a55)− b12b31 (a23a44 + a23a55)

−b31b13 (a54b42b25 − a44b52b25 + a45b52b24 − a55b24b42) + a32b13

(a51b25 + a41b24) + a15a41a54 + a14a45a51 + (a14b42 + a15b52) a23b31,

λ4 = (a44a55 − a45a54) (a33b12b21 − a23b12b31) + (a15a54 − a14a55)

(a33b21b42 − a23b31b42) + (a14a45 − a15a44) (a33b21b52 − a23b31b52)

+ (a45a54 − a44a55) (a32b21b13 − a22b31b13) + a33b12b24 (a45a51 − a41a55)
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+a33b42b24(−a15a51 + a11a55) + a32b13b24(a41a55 − a45a51 )

+ (a41a54 − a44a51)(a33b12b25 − a32b13b25) + a33b42b25(a14a51 − a11a54)

+a33b52b25(a11a44 − a14a41) + a15a51(a23a32 − a22a33 − a22a44 − a33a44)

+a14a45a51 (a22 + a33)+a15a41a54 (a22 + a33)+a45a54(a23a32−a11a22−a11a33
−a22a33) + a14a41 (a23a32 − a22a33 − a22a55 − a33a55)− a11a23a32(a44 + a55)

+a55 (a11a22a33 − a23a32a44) + a11a22a44 (a33 + a55) + a33a44a55(a11 + a22)

+(a15a41 − a11a45)a33b24b52,

λ5 = (a22a33 − a23a32) (a11a44a55 − a11a45a54 + a14a45a51)

+ (a15a54 − a14a55) (a22a33a41 − a23a32a41) + (a23a32 − a22a33)a15a44a51.

Appendix II

ai =
ξ

∆i
[r21 r2

(
r3
(
1− δ2

)
+ pδ∗2

)
− p20δ∗1r3

+εs2r1r5{r3
(
r2 + ν2δ∗1

(
1− δ2

)
− 2νp0δ

∗
1 − νδ∗1

)
+ pν2δ∗1δ

∗2}],

bi =
−1

∆i
[r21{r2

(
r3r4 + pδ∗2q2i

)
− p20δ∗1ξ2r3}

+εs2r3r1r5
(
ξ2 r2 + ν2δ∗1r4 − 2νp0δ

∗
1ξ

2
)

+ εs2pν2δ∗1δ
∗2q2i r1r5],

di = δ∗1
(
p0r1 + εs2νr5

)
(ξai + bi) qi/

(
−r2r1 − εs2ν

2
δ∗1r5

)
,

ei = [εr5{s2
(
r2r1 + εs2ν2δ∗1r5

)
−νδ∗1 (p0r1 + ενr5)}] (ξai + bi) qi/{r1

(
−r2r1 − εs2ν

2
δ∗1r5

)
},

∆i = δ∗2[r21 r2
(
ξ2 + s2 − q2i

)
+ p20δ

∗
1

(
q2i − ξ2

)
+εs2r2r1r5

(
ξ2 − q2i

)
+ εs2δ∗1r1r5{ν2

(
ξ2 + s2 − q2i

)
− 2p0ν

(
ξ2 − q2i

)
}],

r1 =

((
ξ2(Z∗ (1 + τνs) + s (1 + τts)) +Q∗s2

(
1 + τqs+

τ2q
2
s2

))
+

−q2i (Z∗ (1 + τνs) + (1 + τts) s)

)
,

r2 =
(
ξ2 + δ∗3s

2 + p1δ
∗
1 + δ∗2s− q2i

)
, r3 =

(
ξ2 +

s2

δ21
+ 2δ∗2 − q2i

)
,

r4 =
(
ξ2 + s2 − δ2q2i

)
, r5 =

(
1 + τqs+

τ2q
2
s2

)
.


